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In recent years a number of experimental methods!-8 and theoretical calculations®-11 have been used to
evaluate radical substituent effects. These have met with varying degrees of success and are not all mutually
consistent. As levels of theory advance, undoubtedly calculated values of resonance stabilizations (SE) will

improve. For example, the early work by Pasto? shows reasonable correlation with experimental bond
dissociation energies (BDE) but the magnitudes of the calculated SE’s are too low by several kcal/mol. Jensen’s

values10 done at the 6-31G* level, more closely parallel BDE’s but the SE’s are still low.
With this in mind we have calculated the bond dissociation energies for a series of substituted methanes by

Density Functional Theory [B3LYP/6-311 + G (2d,2p)]. Zero point energy corrections have been made and S2
values indicate that spin contamination is not a problem (0.75 - 0.78)12.
Table 1. DFT Calculated BDE’s
AE kcallmol _ <S?>  7ZPE __ BDE!

CH3-H 1017 0753 9.4 1049
CH3CHy-H 96.9 0754 9.6 1011
CH30CH,-H 91.9 0754 82  96.1(CH)
CH;COCH,-H 92.5 0.754 8.2  94.3(CHO)
NCCH,-H 91.3 0.767 89  94.8
H)NCH,-H 88.4 0.754 8.7 93.317

CH,=CHCH,-H 82.9 0778 8.5 87.618

Table 2. Isodesmic Determination of Radical Stabilization

X-CH2* + CH4 1+ X-CH3 + CH3 *
DFT Ellison!6 Bordwell> Pasto? Jensenl® logk®  Creary3 Amold?

X SE* BDE* SE* SE* SE* azo ac oo
H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CHj 4.8 38 4.5 33 3.2 2.7 0.11 0.015
CH30 9.8 8.8(OH) 7.0 5.3 89(OH) 3.7 0.24 0.018
CH3CO 9.2 10.6(CHO) 7.7(CHO) 9.5(CHO) 8.7 0.39(CO2R) 0.06
NC 10.4 10.1 5.7 5.3 6.7 8.2 0.46 0.04
NH; 13.3 11.6 15.0 10.3 11.1

CH;=CH 18.8 17.3 7.8 12.6 9.6 0.67

Correlation coefficient r for 0,985 0.819 0.841 0.942 0.865 0.962 0.767
DFT SE vs other methods

* kcal/mol
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The calculated BDE values are all several kcal/mol less than experimental values but the isodesmic

relationship compensates for these differences and gives stabilization energies (SE) that are closer to
experimental values than previous calculated values.
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